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Synopsis 

The pressure loss a t  the entrance of a capillary tube was studied as a means of charact 
Measurements of four polymer solutions were made and cor- terising viscoelastic fluids. 

related with an equation of the form 

APend = aylHchXchbaDbe + aaH,hXchbaDbr 

where D is the shear rate and where Hch and Xch are a characteristic stress and a charac- 
teristic time, respectively, determined independently from viscosity and normal stress 
measurements. Various theoretical analyses of capillary entrance flow are also com- 
pared. 

INTRODUCTION 

The most fundamental experiments for measuring stress behavior in 
viscoelastic fluids are those in which the fluid elements have undergone 
constant shear rate histories for a very long time. These important vis- 
cometric flows1 are found in the basic viscometric geometries: capillary 
tube, rotational cylinder, cone and plate, etc. On the other hand, many 
industrially important flows are accelerative (nonviscometric) and must be 
analyzed mathematically with a constitutive equation or be correlated 
empirically. The flow at  the entrance of a capillary is this kind of flow. 
It is a particularly important one because of the wealth of data and experi- 
ence from the capillary viscometer. 

The measured pressure drop in a capillary viscometer is an overall one 
from the upstream reservoir to the downstream reservoir or from the up- 
stream reservoir to a free jet. The frictional losses (viscous dissipation) 
include a loss upstream of the tube and inside the tube, due to the develop- 
ing flow, a loss during developed flow in the tube, and a loss a t  the exit. 
There is also a kinetic energy (Bernoulli) effect if either reservoir is not 
large compared with the tube. These various effects plus possible elastic 

* Paper presented at  the symposium Mechanics of Rheologically Complex Fluids, 
Society of Petroleum Engineers of AIME, Houston, Texas, December 16,1965. 
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353 



354 H. L. LA NIEVE, 111. AND D. C. BOGUE 

effects may be summarized in terms of a mechanical energy balance as 
follows : 

A P d P  = AWE) Fugstrm -I- Finside Fdev + Fdwnstrm + F E  + AE 
P J P  

kinetic entrance developed exit elastic 
energy friction friction friction effects 

where F indicates irreversible dissipation, and A indicates differences be- 
tween the exit and entrance regions. The symbol p is the fluid density. 
The quantity E is the elastic energy per unit mass and, in terms of the 
classic balance, is part of the internal energy of the f l ~ i d . ~ ~ ~  All effects 
excepting developed flow friction are classified as end effects and are de- 
noted APend/p.  

For inelastic fluids (where APE/p = 0) analyses are available for the dis- 
sipation in each of the sections indicated in eq. (1). For viscoelastic fluids 
no rigorous analysis exists, but if one assumes that the elastic effects may 
be added to the viscous effects (by no means certain), the elastic effects can 
be identified by difference and correlated experimentally. The analyses 
and procedures for the various terms will now be discussed in turn. 

KINETIC ENERGY AND VISCOUS DISSIPATION EFFECTS 

Kinetic Energy Effects 

In a flow through a capillary from one stagnant reservoir to another the 
net change in kinetic energy is zero. However, at the entrance a pressure 
drop is required to impart a velocity to the fluid, although this pressure is 
recoverable in principle a t  the exit. However, the exit flow is not com- 
pletely reversible, and the kinetic energy of the fluid is at least partially 
dissipated as friction, resulting in a net pressure loss of some fraction of the 
total kinetic energy. For a downstream reservoir this dissipation is ac- 
counted for by the term Fdwnstrm, and the kinetic energy term (AKE) is 
set equal to zero. For a downstream free jet the kinetic energy loss will 
be two velocity heads or somewhat less for non-Newtonian  fluid^.^ For- 
tunately, in most polymer systems the flow rates are so low that the kinetic 
energy contribution (or downstream friction due to it) is negligible. 

Developed Flow Dissipation 
The pressure loss in developed flow is due entirely to viscous dissipation. 

This dissipation, denoted Fdev in eq. (l), has been quantitatively predicted 
by classical developments. The pressure drop may be related to the wall 
shear stress by a momentum balance, and the wall shear rate may be found 
for a general fluid in terms of the average velocity and capillary dimensions 
by the Mooney and Rabinowitsch relationship.516 If a power law is as- 
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sumed to relate wall shear stress to wall shear rate in the capillary, the 
following equation will predict the pressure drop due to developed flow of a 
power-law fluid : 

A P d e v  = pFdev = (2L/R)HchXchnDn (2) 
where D, the wall shear rate, is given by 

D = (8V/d)(3n + 1)/4n 

L is the capillary length, d and R are the capillary diameter and radius, 
respectively, and V is the mean fluid velocity. The lumped parameter 
HchXchn and the parameter n are defined by the constitutive relation 

Ti2 = HchXchnDn (3) 

where TI2 is the shear stress and D the characteristic shear rate (i.e., for 
developed capillary flow TI2 is the wall shear stress and D the wall shear 
rate). 

Dissipation Immediately Inside the Tube 

Another end effect, which is appreciable at  high flow rates but negligible 
at the flow rates of this investigation, is the excess viscous dissipation due 
to the development of the velocity profile near the entrance of the tube. 
The magnitude of this effect, denoted Fins ide  in the energy balance, eq. (l), 
has been predicted and measured for Newtonian fluids7-" and power 
law f l~ ids .~ . l~ - '~  Metzner and White1( indicated from an analysis that 
the elastic effects due to profile development are a very small part of the 
measured elastic pressure drop. 

Dissipation Outside the Capillary Tube 
The viscous dissipation due to converging flow prior to the entrance and 

diverging flow at the exit of the capillary tube is significant for slow flows 
of very viscous fluids. These effects are designated Fupstrm and Fdwnstrm in 

Weissberg16 showed for creeping Newtonian flow into or away from a thin 
orifice plate that the streamlines coincide with an oblate spheroidal co- 
ordinate axis. 

eq. ( 1 ) -  

The pressure dissipated in the entrance was found to be 

A p e , ,  PFupstrrn = 37Q/2R3 (4) 
where 7 is the Newtonian viscosity and Q the volumetric flow rate through 
the orifice. For creeping flow the exit flow into a large reservoir is identical 
with the entrance flow, and the total orifice pressure drop is therefore twice 
that at  the entrance (37Q/R3). By a variational method Weissberg 
proved that the entrance and exit pressure loss for a flow into a finite 
length tube (rather than into a thin orifice plate) is less than 1.16 times the 
thin orifice result given above. 

Tomita" presented an approximate solution for the energy loss due to 
converging flow into a capillary entrance for a viscous power-law fluid. 
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These results predict the energy loss in terms of the power-law fluid param- 
eters with a larger loss for the more pseudoplastic fluids, i.e., lower n. The 
exit flow was not mentioned in Tomita’s treatment. 

ELASTIC EFFECTS 

Qualitative Description 
The elastic loss AP,/p is made up of two terms: Fg,  the dissipative loss 

due to any unusual flow patterns caused by the elasticity, and AE, the 
elastic internal energy acquired by the fluid between the ends of the vis- 
cometer. The lumping of the two terms is an admission of ignorance about 
where and in what way the elastic pressure loss takes place. It is certain, 
however, that F ,  is not zero. In flow between two reservoirs one has AE = 
0 (complete relaxation), and thus the observed elastic pressure drop must 
be due to FB. The most reasonable picture seems to be the following. 
Pressure energy is converted into elastic energy at  the entrance, possibly 
with some irreversible loss during the process; this elastic energy is dis- 
sipated irreversibly at the exit as the fluid flows into the exit reservoir or 
jets into the atmosphere. One feels that perhaps some of the elastic energy 
could be recovered reversibly (as pressure). A useful but not conclusive 
experiment is to compare the pressure drop when a large exit reservoir is 
used with the pressure drop when a free jet a t  the exit is used, all other 
variables (tube diameter, tube length, and flow rate) being constant. Such 
experiments were performed with CMC-water and Separan-water solu- 
tions, and no difference was detected.ls Since one expects irreversibility 
in the case of the free jet (there being no mechanism to harness the work), 
there apparently is complete irreversibility in the exit reservoir also. It is a 
tantalizing question whether the “appropriately” designed diverging exit 
used together with a fluid of “appropriately” high relaxation time would 
permit recovery of the elastic energy as pressure. 

Analyses of Philippoff-Gaskins and Bagley 

Philippoff and Gaskinslg were the first to ,relate the excess viscoelastic 
pressure loss to the elastic property of the fluid. They found that a plot of 
total capillary pressure drop versus L/R at  a constant shear rate is linear. 
The slope of this plot is equal to twice the developed flow wall shear stress, 
and the zero pressure intercept indicated that the end effects pressure loss 
could be treated as an effective additional length of tube (see Fig. 1). From 
an energy balance about the entrance this intercept on the abscissa was 
designated e = n, + SR/2,  where e is the intercept, n, is the tube length 
coefficient due to viscous end effects, and 8,/2 is the coefficient due to elastic 
effects (S, is the “recoverable shear”). 

Bagleym showed that for fluids that followed “Hooke’s law in shear,” 
requiring S, = T,/He, where He is an elastic modulus, the viscous and 
elastic effective lengths could be separated and individually evaluated 
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L/R - 
e 

Fig. 1. Identification of pressure drop due to end flows. 

from capillary data. For suitable fluids a plot of intercept e versus TR 
should be linear, permitting the evaluation of n, and SR by this method. 
E n  terms of the end-effects pressure loss this method gives 

APend = 2n,TRe/He (5) 

Analysis of Tomita 
TomitaZ1 developed a relationship for the elastic energy stored in the 

entrance flow. He used linear elastic theory modified by assuming a power 
relationship between strain and strain rate, to relate the elastic energy to 
the flow field. Streamlines were assumed for the entrance flow, and the 
energy equations were solved for elastic energy loss as a function of the 
material parameters and flow conditions. The viscous portion of the excess 
pressure loss was assumed equal to that of a purely viscous power-law fluid. 

Second-Order Theory Analysis 

The classic approach, consisting of solving the momentum balance 
equation in conjunction with a constitutive equation, was taken by La 
Nievels for the viscoelastic entrance problem, After consideration of the 
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available constitutive theorieszz the Coleman-No11 second-order theory was 
selected, chiefly because it is the simplest theory that predicts normal 
stresses. Also important in the choice was the fact that this theory has 
been successfully used for describing mildly accelerating flows in a con- 
verging channel of small angle.2a 

A lucid derivation of the second-order Coleman-No11 equation is that of 
Coleman et aLZ4 The second-order fluid is described as an incompressible 
simple fluid with a gradually fading memory. The short memory and 
Newtonian nature of the simple fluid theory limit its application to very 
low shear rates. 

A rigorous solution of the momentum equation was not attempted. 
Rather, the streamlines were assumed along axes of three different co- 
ordinate systems, and the corresponding component of the momentum 
equation was integrated from infinitely far before the entrance up to the 
center of the entrance. This approach resulted in an equation of the en- 
trance pressure drop in terms of the Coleman-Koll material constants 
and the velocity function along the streamlines. As a first approximation 
the Newtonian velocity profile was used. 

Solutions were obtained for the entrance pressure drop assuming (1) flow 
along a coordinate axis of an oblate spheroidal coordinate system, (2) flow 
along rays to the center of the entrance in a spherical coordinate system 
(integration was carried out only to a distance equal to the capillary radius 
from the center of the entrance), and (3) flow along rays in a spherical co- 
ordinate system into a 114' cone. (The Newtonian analysis for radial 
flow into a cone of this angle predicts the same viscous pressure drop as 
was predicted by the oblate spheroidal analysis of Weissberg and was ex- 
perimentally verified in this work.) 

In  these cases the resulting entrance pressure drop was a sum of a viscous 
term and an elastic term. For the oblate spheroidal case the viscous term 
was identical with the Newtonian viscous entrance loss of Weissberg. l6 
The viscous term for the spherical coordinate case was identical to the 
Newtonian pressure loss in flow through a cone presented by Oka.25 

The elastic terms were highly dependent on the flow lines assumed and 
the relative magnitudes of the two Coleman-No11 elastic material constants. 
The relative magnitudes of these constants are related to the secondary 
normal stresses in simple shear by 

where 0 and y are the elastic material constants. 
While Weissenberg's theorym requires that the secondary normal stress 

be zero (or 0 = -2y), Markovitz and B r o ~ n ~ ~ , ~ *  have presented data that 
indicate appreciable secondary normal stresses a t  low shear rates with 
relative values as high as 0 = - 4 y. 

The elastic portion of the pressure drop predicted by these analyses was 
much smaller in magnitude than has been reported for real viscoelastic 
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fluids. 
of the experimental results. 

These predictions will be discussed in more detail after presentation 

DIMENSIONAL ANALYSIS 

Despite the fact that many complex processes cannot be suitably treated 
analytically, much can be learned about them through dimensional anal- 
ysis. Such a method will be applied to the viscoelastic end effects prob- 
lem. 

By putting into dimensionless form the equation of motion together with 
a general integral constitutive theory Bogue and Doughtyz2 found that only 
two dimensionless parameters were necessary to characterize a flow field 
for a given viscoelastic material. 

The dimensionless pressure drop due to end effects can be written as a 
function of these parameters along with some dimensionless material 
parameters as 

7 dimensionless material parameters] (7) A P e n d  H c h  XchVch 

P v c h 2  

- -  

where H c h  is a characteristic stress, a characteristic time, V c h  a char- 
acteristic velocity, and a characteristic length. H c h  and b h  are material 
constants. 

If the assumption is made that the function @ may be represented by a 
general power series, the following equation should give the dimensionless 
entrance pressure drop : 

where all az, . . ., an, all a2, . . ., a, and bl, bz, . . ., b, may be functions of 
dimensionless material parameters. 

This equation will now be examined in the lighk of some physical facts. 
( 1 )  For large Reynolds numbers (HehXch/&,Vchp --t 0), the pressure drop 

is determined by the Bernoulli effect, whieh is of the form APend/pVohz = 

al. Therefore, a1 and bl must be zero, aloQg with QZ, a3, . . . . 
(2) For Newtonian fluids in creeping flow (HchXch/LchVchp very large) 

A P e n d / p V c h 2  depends only on a term involving the Reynolds number, 
HchXch/&,l/Tchp- For this situation the constants in eq. (8) must be 

a1 = 0, a2 = finite, 

(3) For second-order fluids in creeping flow the analysis of this paper 
indicates that A P e n d / p V c h Z  depends on two dimensionless terms, HchXch/ 

a2 = bz = 1, a3 = a4 = ... = 0 

L o h V c h p  and HchXchz/Lch2p. The constants in this case must be 

a1 = 0, 

a3 = 1, 

a2 = bz = 1, 

b3 = 2, 

aZ = finite, 

a3 = finite, a4 = a 6  = . . . = 0 
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(4) Experimental evidence indicates that in creeping flow AP.,d depends 
Only on the ratio Vch/Lch and not on either separately.19~21~29~30 Solving eq. 
(8) for A P e n d  in creeping flow, where a1 = 0, gives 

A P e n d  = ff2(Hch/PVch2)arp~ch2(Xchv~h/Lch)b2 + . . . (9) 
The restriction that AP,d must depend on the ratio Voh/Lch and not on 
either separately requires that u2 = u3 = u4 = . . . = 1, and eq. (9) reduces 
to 

A P e n d  = Hch[W(XchVch/Leh)b3 -k ffI(hchVeh/Lch)ba + . . .] (10) 
Equation (10) should be a general expression for the pressure drop due 

to end effects for creeping flow subject to the restraint that the pressure 
drop is a function of v c h / L c h  but neither separately. Any theory that pre- 
dicts this pressure drop should then at  least reduce to the form of this 
equation. Although the form is so general that the requirement that 
theories fit this form may not eliminate many incorrect theories, this form 
should prove useful in comparing the theories with one another. 

COMPARISON OF ANALYSES 
Equation (10) presents an ideal form for comparing the various analyses. 
In order to simplify nomenclature, the characteristic parameters will be 

specified. The characteristic velocity and length will be chosen so that 
Vch/Lch is simply the wall shear rate in the capillary, denoted D. The 
characteristic stress H c h  and the characteristic time hch will be chosen to be 
those defined by the following empirical power-law relationships: 

where TI, - T2z is the principal normal stress difference and D is the shear 
rate. 

The specification of these parameters does not restrict the applicability 
of eq. (10) but does specify the values of the functions ag, as, . . . ., and €12, 

b3, . . . . 
In terms of the specified parameters eq. (10) becomes 

A P e n d  = ffZHChhCha2Db2 + ff3HchXChbaDba + . . . (13) 
The analyses of the viscoelastic entrance pressure drop were arranged in 

the form of this equation and are presented for comparison in Table I. 
To fit Bagley’s graphical method, represented by eq. (5 ) ,  to this form, it 
was necessary to assume a power-law relationship between stress and shear 
rate. The elastic modulus He then becomes equal to the characteristic 
stress. To compare Tomita’s analysis, it was necessary to substitute 
material parameters measured in shearing flow for his linear strain param- 
eters. Tomita suggests that, although not rigorous, this appears to be the 
best way of evaluating these  parameter^.^^ 
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TABLE I 
Comparison of the Measured End-Effects Pressure LOSS 

with the Predictions of the Various Analyses 

APend = cYzHchLhbPDb2 + atHC&hbaDb3 -k . . “4, 

ff9, a, “ 8  ba “6. .. . 
Bagley analysis 2n, n 1 2n 0 

(evaluated 
empirically) 

Tomita analysis* Kv(n‘) n’ Kidn,’m‘) 2m‘ 0 
Second-order 

analyses 

spheroidal 

plane 
entrance 

cone 

A. Oblate 3r/4b 1b -3(8 + 4r)/32r 2 0 

B. Radial, 1 1 + (24P + 28.5r)/32r 2 0 

C. Radial, 114’ 2 . 3  1 0.31(6.1,3 + 6.25r)/r 2 0 

* Prime indicates Tomita’s material parametem, which differ from those of this paper. 
b Identical with results from Weissberg’s viscous analysis. 

EXPERIMENTAL 

The total capillary pressure loss was measured as a function of flow 
rate and capillary length-to-radius ratio by means of the apparatus shown 
in Figure 2. Four capillaries with length-to-radius ratio ranging between 5 
and 200 were used. To ensure constant radius, glass tubing of radius 

IN 
:R 

Fig. 2. Schematic diagram of equipment. 



362 

20c 

400 
80 

,ti0 

- .a 40 

al v) 

0 
._ 

a 
0 
F 

a 

i 
20 

v) 

0 V 

> E 

5 40 

% 6  

a a 

4 

2 

4 

H. L. LA NIEVE, 111, AND D. C. BOGUE 

40 60 80400 200 400 600800 1000 2000 4000 
SHEAR RATE, D(sec-1) 

Fig. 3. Apparent viscosities of the test fluids. 

0.538 0.001 was bonded with an epoxy cement inside a brass holder. 
The glass was flush with the entrance, forming a smooth 180' entrance with 
a diameter ratio of better than 50: 1. For the shorter tubes the exit was 
flush into the brass holder of l/2 in. inside diameter, with a diameter ratio 
of 1 : 10. The total pressure drop was corrected for the exit flow in the 
l / Z  in. tube. The pressure drop was not affected when the flow direction 
in the tube was reversed. Most runs were made with exit flow into stag- 
nant test fluid; however, runs were made exiting into air with no signifi- 
cant difference in pressure drop noticeable. 

The following polymer solutions were studied : 12% polystyrene (PS) 
in Aroclor, 10% polyisobutylene (PIB) in decalin, 5% Separan AT 30 
(Dow Chemical Company) in water, and 2% carboxymethyl cellulose 
(CMC) in water. National Bureau of Standards viscosity test oil OB 
(214.9 poise) was used for testing the calibration of the viscometer. 

For the same polymer solutions the primary normal stress difference and 
shear stress were measured as a function of shear rate on the Weissenberg 
Rheogoniometer. 32 
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ANALYSIS OF DATA 

Viscous Behavior 

The fluid behavior during developed tube flow was characterized for the 
Newtonian fluid by the viscosity and for the polymer solutions by the 
apparent viscosity defined by 

qapp = T d D  (14) 

The results of the developed flow measurements are compared with the 
rheogoniometer measurements for each fluid investigated (Fig. 3). The 
linearity of these log-log plots indicates that a power law may be used for 
describing the fluid behavior over the shear rate range. 

The National Bureau of Standards Oil OB was used for checking the 
calibration of both instruments. From Figure 3 it can be seen that the vis- 
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Fig 4. Elastic pressure drop and normal stress difference for the 12% PS-Aroclor solu- 
tion. 
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cosity measured by the capillary instrument agreed to within 1.5% of the 
value provided by the NBS. 

The experiments with Oil OB gave some useful data for evaluating the 
Newtonian analyses for the end-effects pressure loss. The measured values 
of this pressure loss, from extrapolation of the linear plot of APbt versus 
L/R to zero length, are presented, with the values predicted by Weiss- 
berg’s analysis a t  several shear rates, in Table 11. The close agreement 
over the shear rate range is obvious. 

TABLE I1 
Newtonian Viscous End Effects, NBS Oil OB, Lot 34 

~ 2 5 0  = 214.9 poise 

Shear rate, 
sec. -l 

1000 
600 
500 
400 
300 
200 
150 
100 

T 
measured, 

poise 

217.0 
211.0 
211.8 
212.0 
212.0 
216.0 
212.0 
215.9 

APmd 
measured, 

psi 

APmd 
Weissberg, 

psi 

6.5 
4.4 
3.2 
2.5 
1.9 
1.5 
1 .0  
0.7 

7.4 
4 .3  
3.6 
2.9 
2.2 
1 . .5 
1.1 
0.73 

Viscoelastic Behavior 

The pressure losses due to end effects for each of the polymer solutions 
were extracted from the plots of APtOt versus L/R and are presented in 
Figures 4-7 as a function of shear rate. The viscous portions of the 
pressure drop were approximated with Weissberg’s and Tomita’s viscous 
analyses. The difference between the measured total and estimated vis- 
cous end-effects losses was assumed to be the loss due to elasticity. 

Included in these figures is the plot of normal stress difference TI1 - TZz 
as a function of shear rate as measured with the rheogoniometer. The 
linearity of the log-normal stress plots indicates that a power law of the 
form 

may be used for describing the relationship between primary normal stress 
difference and shear rate. Equation (3) together with eq. (15) define the 
material parameters Hch and koh. 

Examination of Figures 4-7 shows that for a given fluid the slope of the 
elastic pressure loss (with Weissberg’s viscous analysis) versus shear rate is 
the same as the slope of the normal stress difference versus shear rate. This 
relationship may be summarized as 
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Fig. 5. Elavtic pressure drop aud normal stress difference for the 10% PIB-decdh 
solution. 

where a3 is a proportionality constant that depends 011 the entrance geom- 
etry and the fluid. 

The experimental results may be summarized in terms of the diniensiorml 
analysis equation (eq. 13). The first term of the equation represents the vis- 
cous portion of the pressure drop, a2 being evaluated from Weissberg’s 
(or Tomita’s) analysis. The exponent 6 2  will either be unity, in Weiss- 
berg’s analysis, or n, in a power-law analysis. In the elastic term a3 has 
been evaluated empirically for the test fluids from Figures 4-7. The ex- 
ponent b3 is simply the slope of log-normal stress versus log shear rate. 

The material parameters for the test fluids are summarized in Table 111. 
The range in the experimental evaluation of a3 is due to doubt in the esti- 
mation of the viscous portion of the end-effects pressure loss. The fact 
that the exponent of the relationship for APE versus shear rate with Weiss- 
berg’s viscous analysis was so nearly equal to  the normal stress power-law 
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200 400 600 800 4000 2000 
SHEAR RATE, D (sec-9)  

Fig. 6. Elastic pressure drop and normal stress difference for the 5% Separan-water 
solution. 

exponent indicates, however, that his analysis was not a bad approximation 
for the viscous portion. 

A strong correlation was found between the end-effects coefficient a3 
and the elastic power-law exponent m, as can be seen in Figure 8. There was 
no correlation between a3 and the viscous power-law exponent n, indicating 
that the influence of n on the flow field is of secondary importance in the 
evaluation of the elastic pressure loss. 

TABLE I11 
Viscoelastic Fluid Parameters 

Fluid 2m 12 Hchkchn' HchXchzmh CY8 (exptl.) 

12% PS-Aroclor 1.06 0.64 855 170 0.9 f 0.2  
10% PIB-decalin 0.74 0.30 1950 815 1.7 f 0.4 
5% Separan-water 0.56 0.15 1050 1170 2 . 1  f 0.4  
2% CMC-water 0.44 0.31 352 500 5 . 6  f 0.6 

* In units of dynesec."/crn.%. 
b In units of dyne-sec.2"/cm.2. 
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200 400 600 aoo 4000 2000 
SHEAR RATE, D ( sec-’ 

Fig. 7. Elastic pressure drop and normal stress difference for the 2% CMC-water solu- 
tion. 

To explain this correlation of a3 and, hence, elastic end-effects pressure 
loss with m, the entrance storing of elastic energy will be considered on the 
assumption that most of the elastic energy that is stored during the flow is 
irreversib€y dissipated, resulting in the elastic pressure drop. It is impor- 
tant to remember that the elastic entrance pressure drop has been char- 
acterized by the wall shear rate in the capillary. Throughout the flow field 
of interest, the converging flow before the entrance, there is actually a 
spectrum of shear rates, all lower than the characterizing tube shear rate. 
The elastic entrance pressure drop might then be visualized as a sum of 
incremental pressure losses over this flow field, each with its characteristic 
shear rate between zero and the tube shear rate. Since the normal stress 
difference is specified explicitly by the shear rate, each of the increments of 
the elastic entrance pressure loss has its own characteristic normal stress 
difference. This normal stress difference describes the property of the 
fluid that causes the elastic entrance pressure loss. 

For a fluid with m = 1 the normal stress difference is very dependent on 
shear rate. Very near the entrance, where the shear rate is highest, the 
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PREDICTION OF ANALYSES USING 4 SECOND-ORDER THEORY 
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Fig. 8. Elastic coefficient rn a function of the elastic exponent m. 

normal stress difference would be much greater than at  some point farther 
from the entrance. In  this case the incremental elastic pressure losses, 
which appear to be proportional to the local normal stress difference, would 
be significant only very near the entrance. For fluids with smaller values 
of m the normal stress difference would be far less sensitive to shear rate 
and would have proportionately a much higher value farther upstream 
from the entrance. The sum of the elastic pressure increments would then 
have significant terms much farther from the entrance, resulting in a larger 
total entrance elastic pressure drop. 

The experimental results in the form of the dimensional analysis equation 
(13) are convenient for comparison with the predictions of the theories 
summarized in Table I. From the large effect of m on a3 observed it seems 
that a theory that limits the value of m to unity, as does the second-order 
theory, cannot correctly relate the end-effects pressure loss to fluid param- 
eters. However, such an analysis might predict the limiting value for the 
end effects a t  low flows, where fluids may be described by the second-order 
theory. 

The range of the second-order theory predictions of a3 is shown in Figure 8. 
The predicted values were very sensitive to the assumed flow lines and the 
assumed relationship between the material parameters @ and y. Depend- 
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Fig. 9. Comparison of normal stresses calculated by two means for polyethylene melts. 

ing on these assumptions, the second-order theory predicts from a small 
positive to a small negative value of a3. Extrapolation of the experimental 
plot of a3 to m = 1, although approximate, does suggest a small positive 
value of a3 in agreement with this analysis. Although the Bagley analysis 
has been the most generally used method for handling the end-effects 
problem, it has been ineffective when applied to fluids that do not follow 
“Hooke’s law.” The requirement that n be equal to m (Hooke’s law) 
limits the applicability of the Bagley method, since n and m differed by 
more than 50% for some fluids (see Table 111). The explicit specification 
of a3 = 1 further limits the applicability of this method, since Figure 8 shows 
a3 to vary from less than 1 to greater than 10, depending on the fluid 
parameter m. This specified value of a3 could then result in an order-of- 
magnitude error in the prediction of the elastic pressure loss for some fluids. 

As can be seen from Table I, Tomita’s analysis in terms of the entrance 
pressure drop is of the same form as the equation describing the results of 
this investigation. It must be remembered that in this comparison 
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Tomita’s small strain fluid parameters have been assumed equivalent to the 
corresponding flow parameters. With this assumption K ,  was evaluated 
for the fluids of interest.ls These values were included in Figure 8. As can 
be seen, Tomita’s analysis predicted a reasonable value for a fluid with n 
= m = 1, but the predicted values were too low for all of the test fluids. 
From this figure it is clear that this analysis does not have the ability needed 
to predict the effect of m on the elastic pressare drop. Tomita’s analysis 
seems also to be very sensitive to the assumed flow lines. It must be con- 
cluded that, although Tomita’s analysis predicts the correct form for cor- 
relating the end effects, it cannot quantitatively predict them. 

Any analysis made to predict accurately the capillary end effects for real 
viscoelastic fluids a t  “medium” shear rates must be able to account for 
the shear rate dependence of both the viscous and elastic properties. 
Since these analyses appear so sensitive to the assumed flow lines, either 
the solution for the flow lines must be included in the analysis, or better 
approximations of the flow lines must be made. Important information 
about the flow lines might be gleaned from photographic studies of the 
entrance 

Although the’ experimental evidence shows a definite correlation be- 
tween a3 and m for the fluids tested (see Fig. S), it should be expected that 
for some fluids secondary normal stress effects and the effects of the viscous 
properties on the velocity profile might significantly affect the value of a3. 
The variation of a3 in the second-order analyses with the ratio of @ to y 
illustrates the role that secondary normal stress effects could play. The 
possible effect of the viscous properties on a3 is demonstrated in Tomita’s 
analysis, where K ,  is shown to be very dependent on n. 

An attempt was made to broaden the data to include a polymer melt. 
Bagley34 donated capillary data for several polyethylene melts, and jet 
expansion data that had been taken simultaneously. The results of 
analysis of the capillary data are presented in Figure 9 with the prediction 
of the normal stress difference from the correlation between a 3  and m of 
Figure S. 

A Metaner type of jet analy~is~”~’ was used for relating the expansion 
to normal stresses; however, this method predicted unreasonably low 
normal stresses and a much stronger shear rate dependence than expected 
(see Fig. 9). Certain difficulties, notably solidification of the molten jet 
and short L/R ratios (about 30), complicate the conclusions. However, 
the gross discrepancies in Figure 9 certainly suggest a “first-order” difficulty 
in some analysis. Unfortunately, rheogoniometer data are not available 
for this fluid. Savins3* noted a similar discrepancy between the jet expan- 
sion analysis and the capillary entrance analysis for the concentrated CMC 
solution data of M c I n t o ~ h . ~ ~  

CONCLUSIONS 

For the polymeric solutions investigated it was possible to correlate over 
a tenfold shear rate range the elastic pressure drop aP, from the capillary 
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experiment with the normal stress difference TU - TB from an independent 
measurement. Both these quantities were similar functions of shear rate 
(i.e., could be described by the same power-law exponent) and, therefore, 
were simply proportionally related. The proportionality constant was 
found to be a strong function of the elastic power-law exponent, a fluid 
parameter. 

A dimensional analysis of the pressure loss due to viscoelastic end effects 
provided a form of correlating experimental data and of comparing the 
various analyses of the problem. None of the present analyses were able 
to predict the large measured dependence of elastic pressure loss-normal 
stress difference proportionality constant on the elastic power-law expo- 
nent. It is apparent that a theory capable of describing highly shear de- 
pendent behavior will be necessary. 

Finally, gross discrepancies between normal stresses predicted by the 
capillary entrance method and those predicted by the jet expansion method 
were noted in polyethylene melts. 

The authors wish to thank the National Aeronautics and Space Administration for its 
support of the final phases of the work under NsG 671. They particularly wish to thank 
E. B. Bagley and Canadian Industries Limited for providing the polyethylene melt data. 
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